27 research outputs found

    CONCEPTION, TECHNOLOGIE ET PACKAGING DE CELLULES À VAPEUR DE CÉSIUM POUR LES HORLOGES ATOMIQUES DE TYPE MEMS

    Get PDF
    Atomic clocks are nowadays among the most accurate time and frequency standards, and are used, e.g.,for international time distribution service or in global navigation satellite systems. During the last severalyears, based on reliable and well-stabilized microelectromechanical systems (MEMS) technology and onthe availability of lasers on chip (single-mode vertical-cavity surface-emitting laser; VCSEL),considerable work has been performed by different groups around the world to develop miniaturizedversion of atomic clocks, called MEMS atomic clocks (MAC) or chip scale atomic clocks (CSAC).The goal of this thesis was to design and develop the technology of Cs vapor cells along with thermalanalysis for the thermal management of fully packaged Cs vapor cell for MEMS atomic clock. This workhas been carried-out in the framework of European project “MEMS atomic clock for timing, frequencycontrol and communication” (MAC-TFC). Two different architectures of Cs vapor cell have beenconsidered. The first one operates on the transmission of light through the cell and thus the Cs-vapor, andis called transmissive cell or T-cell. Such T-cell is made of silicon based deep-cavities sandwichedbetween two borosilicate glass wafers. For their fabrication, deep reactive ion etching (DRIE) process hasbeen optimized in order to produce smooth enough side walls of silicon cavities. In addition, specificanodic bonding process has been developed to fill the cavities with buffer gas at the required pressure.Second version of Cs vapor cell is based on the reflection of laser light inside the KOH etched siliconcavity sealed by one borosilicate glass wafer and is called reflective cell or R-cell. R-cells, as an advantageover the T-cells, allow e.g. a longer interaction of light/atom inside the Cs cavity, whereas location ofoptical source and detection elements on the same side of cell leads to better clock compactness. For theirfabrication, wet KOH etching, employed to realize the cavities inside the silicon with near mirror like(111) planes, has been studied and optimized. Further, diffraction gratings for routing of circularlypolarized light have been designed, fabricated and integrated on top of the Cs vapor R-cell. In bothversions of Cs vapor cells, our goal was to simplify the related clock assembly by doing maximumintegration and alignment at the wafer level, thanks to refractive and diffractive micro-optical componentswhile thermal analysis has been also performed for the thermal management of fully packaged Cs vaporcell (transmissive one) based on the Low temperature co-fired ceramics (LTTC) packaging.Les horloges atomiques sont de nos jours parmi les normes de temps et de frĂ©quences les plus prĂ©cises etsont utilisĂ©es, par exemple, pour les services de distributions travaillant Ă  l'heure internationale ou pour lessystĂšmes de navigation globaux par satellite. Au cours des derniĂšres annĂ©es, un travail considĂ©rable a Ă©tĂ©accompli par diffĂ©rents groupes Ă  travers le monde pour dĂ©velopper une version miniaturisĂ©e des horlogesatomiques, basĂ©e sur la technologie des systĂšmes microĂ©lectromĂ©caniques qui est fiable, bien stabilisĂ©e etsur la disponibilitĂ© de lasers sur puces (diode laser monomode Ă  cavitĂ© verticale Ă©mettant par la surface ouVCSEL : Vertical-Cavity surface emitting Laser). Ce type d'horloge atomique est appelĂ© horloge atomiqueMEMS ou horloge atomique sur puce (CSAC : Chip Scale Atomic Clocks).L'objectif de cette thĂšse Ă©tait de concevoir et dĂ©velopper la technologie des cellules Ă  vapeur de CĂ©sium(Cs) ainsi qu’une analyse thermique pour sa gestion thermique lorsqu’elle est complĂštement packagĂ©epour les horloges atomiques MEMS. Ce travail a Ă©tĂ© rĂ©alisĂ© dans le cadre du projet europĂ©en "MEMSatomic clock for timing, frequency control and communication" (MAC-TFC). Deux conceptionsdiffĂ©rentes de la cellule Ă  vapeur de Cs ont Ă©tĂ© considĂ©rĂ©es. La premiĂšre est basĂ©e sur la transmission de lalumiĂšre Ă  travers la cellule et donc au travers de la vapeur de Cs et est appelĂ©e cellule transmissive ou T-cell. Ces T-cells sont rĂ©alisĂ©es Ă  base de cavitĂ©s profondes gĂ©nĂ©rĂ©es dans du silicium et prises en sandwichentre deux wafers de verre borosilicatĂ©. Pour leur fabrication, le processus de gravure profonde par ionsrĂ©actifs (DRIE-Deep reactive ion etching) a Ă©tĂ© optimisĂ© afin de produire des cavitĂ©s dans le silicium dontles parois soient suffisamment lisses. De plus, le procĂ©dĂ© de soudure anodique a Ă©tĂ© dĂ©veloppĂ© pourremplir les cavitĂ©s avec du gaz tampon Ă  la pression requise. La deuxiĂšme version de la cellule Ă  vapeurde Cs est basĂ©e sur la rĂ©flection de la lumiĂšre du laser Ă  l'intĂ©rieur des cavitĂ©s gravĂ©es dans le silicium parKOH et scellĂ©es par un wafer de verre borosilicatĂ©. Cette cellule est appelĂ©e cellule rĂ©flĂ©chissante ou R-cell. Les R-cells permettent, par rapport aux T-cells, une interaction lumiĂšre/atome plus longue dans lescavitĂ©s contenant du Cs, tandis que la localisation de la source optique et des Ă©lĂ©ments de dĂ©tection dumĂȘme cĂŽtĂ© de la cellule permet la rĂ©alisation d’une horloge plus compacte. Pour leur fabrication, lagravure humide par KOH, employĂ©e pour gĂ©nĂ©rer les cavitĂ©s Ă  l'intĂ©rieur du silicium avec des parois dontla surface est proche de celle d’un miroir (111), a Ă©tĂ© Ă©tudiĂ©e et optimisĂ©e. De plus, les rĂ©seaux dediffraction pour le guidage de la lumiĂšre polarisĂ©e circulairement ont Ă©tĂ© conçus, fabriquĂ©s et intĂ©grĂ©s surla partie supĂ©rieure de la R-cell Ă  vapeur de Cs. Pour les deux versions des cellules Ă  vapeur de Cs, notreobjectif Ă©tait de simplifier l'assemblage relatif Ă  l'horloge en faisant un maximum d'intĂ©gration et d'alignement Ă  l'Ă©chelle du wafer, grĂące Ă  des composants micro-optiques rĂ©fractifs et diffractifs. Une analyse thermique a aussi Ă©tĂ© effectuĂ©e pour la gestion thermique de la cellule Ă  vapeur de Cs complĂštement packagĂ©e (T-cell) Ă  base de cĂ©ramiques cofrittĂ©e Ă  basse tempĂ©rature (LTCC : Lowtemperature Co-fired ceramics)

    Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    Full text link
    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ±\pm 0.03) eV, leading to a clock frequency shift rate of 2.7×10−9/2.7\times10^{-9}/K in fractional unit. A hyperfine population lifetime, T1T_1, and a microwave coherence lifetime, T2T_2, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.Comment: 33 pages, 13 figure

    Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    No full text
    International audienceThis paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 ÎŒm

    Design and Thermal Modeling of a Microregenerator

    No full text
    International audienceThis paper reports design and thermal modeling of a micro-scale regenerative heat exchanger (microregenerator) dedicated to a free piston Stirling generator for waste heat recovery at low temperatures. The selected geometry for the microregenerator is a microchannel integrated with silicon photo-etched micropillars, the porosity is around 80% and the shape factor of the etched microstructures is around 0.35. The gas flow is set to be incompressible and viscous (note that no viscous heating was involved in the computation).Two-dimensional heat transfer in the porous medium with staggered pattern configuration under unidirectional steady state flow conditions was numerically investigated using a CFD tool (Fluent 15.0). The investigated working fluids are respectively air, helium (He) and hydrogen (H2). The obtained numerical results confirm that for a better thermal heat diffusion in the fluid path, helium is found to be the most interesting candidate

    Deep Wet-Etched Silicon Cavities for Micro-Optical Sensors: Influence of Masking on {111} Sidewalls Surface Quality

    No full text
    International audienceIn this paper, we investigate the influence of different masking parameters onto the surface quality of the {111} sidewalls in order to generate specifically deep cavities by wet-anisotropic-etching of bulk silicon, for optical sensors using cavity sidewalls as reflectors. Mask alignment with crystal planes prior to wet-etching is found to be essential in order to avoid the appearance of additional planes during long etching. Mask deposition processes have been also evaluated. Among the different employed mask materials, Cr/Au gives the best results. It is then shown that cavities as deep as 1 mm with low roughness sidewalls can be simply produced with potassium hydroxide solution with periodic piranha cleanin

    Single-step deep reactive ion etching of ultra-deep Silicon cavities with smooth sidewalls

    No full text
    International audiencetA process based on deep reactive ion etching (DRIE) has been developed and optimized for the fabricationof millimeter deep silicon cavities with smooth sidewalls. The process combines two approaches whichinvolve an optimized etching process based on the classical Bosch process (Alcatel A601E equipment)followed by the use of an aqueous etchant solution of potassium hydroxide (KOH) to smooth the surfaceand remove the fluorocarbon contaminants remaining after the DRIE process. As DRIE highly dependson the opening size of the patterned etch mask, different opening sizes have been tested to completelyetch through a 1.4 mm thick silicon wafer. Additionally, the effect of different etch-stop materials ontothe sidewalls quality has also been characterized. Sidewall quality of etched-through cavities was char-acterized by scanning electron microscopy (SEM) and contact surface profilometry. This single-step DRIEetching followed by short exposure to KOH solution permits to smooth sidewalls and achieve a surfaceroughness as low as 50 nm, which is the roughness typically obtained with the Bosch process on standarddepths

    Conception et modĂ©lisation thermique d’un microrĂ©gĂ©nĂ©rateur

    No full text
    International audienceRĂ©sumĂ© - Cet article prĂ©sente la conception et la modĂ©lisation thermique d’un microrĂ©gĂ©nĂ©rateur en vue de l’intĂ©grer dans une micromachine Stirling Ă  membrane hybride. Le microrĂ©gĂ©nĂ©rateur conçu est formĂ© par des microplots gravĂ©s en silicium logĂ©s entre deux wafers de verre. Les microplots sont disposĂ©s en quinconce le long du microcanal. La modĂ©lisation des Ă©changes thermiques entre fluide et parois chauffĂ©es pour diffĂ©rents gaz sous un rĂ©gime laminaire pour un fluide visqueux incompressible a montrĂ© que la diffusion thermique est le mode de transfert prĂ©pondĂ©rant

    Design, fabrication and CFD modeling of a Stirling engine microregenerator

    No full text
    International audienceThis paper reports the design, fabrication and CFD modeling of a microregenerator in order to be integrated in a multiphase piezoelectric smart membrane Stirling engine. The application aims to recover waste heat at low temperatures and to convert it into electricity via the piezoelectric element. The suggested geometry for the microregenerator is a microchannel integrated with staggered DRIE etched silicon micropillars, the whole is encapsulated between two glass wafers. The porosity ranges from 0.8 to 0.9. A 2D numerical study of the microregenerator thermofluidic performances was investigated. Three gases (air, helium andhydrogen) were investigated. The gas flow is set to be incompressible and viscous under laminar unidirectional steady flow conditions for low Reynolds number (<10). According to the obtained results, helium has shown the highest pressure drop since it’s the most viscous gas. The pressure drop encountered with helium gas is more than twice the one registered with hydrogen. Nevertheless it was the fastest gas to heat up. Trade-off between heat transfer and pressure drop needs to be reached
    corecore